Kai-Fu Lee TED Talk about Chinese AI

Kai-Fu Lee TED Talk about Chinese AI, here. Worth watching. Many insights!

Advertisements

Natural Question Answering Research at Google

just announce on the Google AI Blog …/

Natural Questions: a New Corpus and Challenge for Question Answering Research

 

this is pretty exciting …hope to this grow and have fruitful implementation on the Google search engine.

this is what the Google AI researchers are saying

…. there are currently no large, publicly available sources of naturally occurring questions (i.e. questions asked by a person seeking information) and answers that can be used to train and evaluate QA models. This is because assembling a high-quality dataset for question answering requires a large source of real questions and significant human effort in finding correct answers.

To help spur research advances in QA, we are excited to announce Natural Questions (NQ), a new, large-scale corpus for training and evaluating open-domain question answering systems, and the first to replicate the end-to-end process in which people find answers to questions. NQ is large, consisting of 300,000 naturally occurring questions, along with human annotated answers from Wikipedia pages, to be used in training QA systems. We have additionally included 16,000 examples where answers (to the same questions) are provided by 5 different annotators,

I am really looking forward to digging into this …good questions and good answers are definitely part of the key for solving some great puzzles ….

have fun …

AI, The Real History: McCorduck’s Machines who Think

“The occupational activities of children are learning, thinking, playing and the like. Yet we tell them nothing about those things.”  per AI Pioneer Seymour Papert –  In Pam McCorduck’s Machines who Think, (an outstanding book; Pam is a great author, turns out she’s the wife of Joe Traub who was Computer Science Dept Chair at Carnegie Mellon University & Columbia University … and had amazing insight into the real story 🙂 – not found elsewhere ) https://amzn.to/2FwGmIu 

EXCELLENT EXCELLENT BOOK … It’s really packed with amazing insights and details hidden from the public view …

I didn’t realize Papert’s connection with Piaget and his deep understanding and interest in how children learn.  Of course Papert and Minsky’s Perceptrons were widely known [ and got a refresh boost . The Perceptron. ideas… which, in prehistoric times, with Marvin Minsky, helped pave the way to the AI we know today. — that’s where the real action was and maybe still is …  check the reboot. over at  https://amzn.to/2TNjok7

 

Coming up soon – in my book: Regarding Natural, Artificial & Other (?) Intelligences.

One of the main categories of discussion in this book is that of worthwhile tasks for AI. I will devote some time to stating some of the recognized questions, problems, and tasks. I will also mention some notable AI accomplishments and highlight a few of the recognized scholarly achievements. Another topic for discussion is the classification of Intelligences. What is Natural Intelligence? What is Artificial General Intelligence? What is Superintelligence? What about human measures such as IQ? G? What does the AlphaZero algorithm beating the best human players in Chess, Go and Shogi mean? Can the Paperclip Apocalypse really happen?

All these and more … coming soon …

Deep Learning on My Mind

OK, so I started perusing Terry  Sejnowski’s   recent book,  The Deep Learning Revolution.  It’s dedicated to Bo and Sol, Theresa, and Joseph and is In memory of Solomon Golomb.  Nice!

  • It’s a great book. In the short time I spend with it,  I learned quite a lot. I decided to see what’s most important to Terry looking at the topics he spends most of his time on.  Here’s what pops out first …neural networks and deep learning . [To be expected], then the items getting most discussion are:
  • the brain
  • machine learning
  • learning algorithm
  • artificial intelligence
  • the world
  • visual cortex
  • the network
  • boltzmann machine
  • the cortex
  • Geoffrey Hinton [looks like Geoff is really getting attention and kudos from everyone!!]
  • network models
  • the future
  • learning
  • self driving car
  • learning networks
  • cost function
  • deep learning networks
  • hopfield net
  • primary visual cortex
  • the visual cortex
  • independent component analysis
  • real world
  • brains
  • the internet
  • the perceptron
  • facial expressions
  • reinforcement learning
  • Francis Crick
  • hidden units
  • the retina
  • information processing systems
  • neural information processing
  • neural information processing systems
  • td gammon
  • the boltzmann machine
  • computer vision
  • driving cars
  • simple cells
  • the hopfield net
  • cerebral cortex
  • David Hubel

Somewhere further down the list I came across Soumith Chintala over at FaceBook AI / Courant Institute.  His was a new name for me. Looks like he’s a PyTorch maven, super-coder. Nice! his Wasserstein Generative Adversarial Network (GAN) paper seems pretty nice.  Apparently FAIR has advanced the ball a lot with Generative Adversarial Networks. I need to  be paying much more attention.  Also noted a new name to follow, Cade Metz  who writes about  technology for The New York Times/

All this from my first glance at The Deep Learning Revolution.  

read it … I will get deeper into the deep learning as well.

Happy Holidays …