Super-intelligence: Write a PhD thesis in an afternoon

Would you like to have this as your toy? Assistant? X-Friday?

I certainly would love to have a machine that I can set on a quest to solve a serious / intriguing problem!

check this out. From:

Philip Larrey (2017), Would Super-Human Machine Intelligence Really Be Super-Human? in G. Dodig-Crnkovic and R. Giovagnoli (eds.), Representation and Reality in Humans, Other Living Organisms and Intelligent Machines, Studies in Applied Philosophy, Epistemology and Rational Ethics

 

 “The simplest example of speed superintelligence would be a whole brain emulation running on fast hardware. An emulation operating at a speed of ten thousand times that of a biological brain would be able to read a book in a few seconds and write a PhD thesis in an afternoon. With the speedup factor of a million, an emulation could accomplish an entire millennium of intellectual work in one working day”  

Watson for Oncology (WFO) – more details

Back to Watson for Oncology (WFO). … so today was deep dive day to look at what papers were written specifically re WFO.

So,  on Sunday, June 23, 2019, using Google Scholar … the list below is of  the main useful things I could find.

Conclusions:

  • Shows promise
  • Not ready for solo flight (i.e. needs clinicians to work with it).
  • Benefits from adding diagnostic tests liken GEA (Gene expression assays)
  • Keep working on improving WFO, and understand specifics better.

 

Literature I looked at, will look at it again in more detail, and provide further insights.

  1. Choi, Y. I., Chung, J. W., Kim, K. O., Kwon, K. A., Kim, Y. J., Park, D. K., … & Sung, K. H. (2019). Concordance Rate between Clinicians and Watson for Oncology among Patients with Advanced Gastric Cancer: Early, Real-World Experience in Korea. Canadian Journal of Gastroenterology and Hepatology, 2019.
  2. Kim, Y. Y., Oh, S. J., Chun, Y. S., Lee, W. K., & Park, H. K. (2018). Gene expression assay and Watson for Oncology for optimization of treatment in ER-positive, HER2-negative breast cancer. PloS one, 13(7), e0200100.
  3. Schmidt, C. (2017). MD Anderson breaks with IBM Watson, raising questions about artificial intelligence in oncology. JNCI: Journal of the National Cancer Institute, 109(5).
  4. Zhang, X. C., Zhou, N., Zhang, C. T., Lv, H. Y., Li, T. J., Zhu, J. J., … & Liu, G. (2017). 544P Concordance study between IBM Watson for Oncology (WFO) and clinical practice for breast and lung cancer patients in China. Annals of Oncology, 28(suppl_10), mdx678-001.
  5. Zou, F., Liu, C. Y., Liu, X. H., Tang, Y. F., Ma, J. A., & Hu, C. H. (2018). Concordance Study between IBM Watson for Oncology and Real Clinical Practice for Cervical Cancer Patients in China: A Retrospective Analysis. Available at SSRN 3287513.
  6. Somashekhar, S. P., Sepúlveda, M. J., Puglielli, S., Norden, A. D., Shortliffe, E. H., Rohit Kumar, C., … & Ramya, Y. (2018). Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Annals of Oncology, 29(2), 418-423.
  7. Somashekhar, S. P., Sepúlveda, M. J., Norden, A. D., Rauthan, A., Arun, K., Patil, P., … & Kumar, R. C. (2017). Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment.
  8. Somashekhar, S. P., Kumarc, R., Rauthan, A., Arun, K. R., Patil, P., & Ramya, Y. E. (2017). Abstract S6-07: Double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with Manipal multidisciplinary tumour board–First study of 638 breast cancer cases.
  9. Liu, C., Liu, X., Wu, F., Xie, M., Feng, Y., & Hu, C. (2018). Using artificial intelligence (Watson for oncology) for treatment recommendations amongst Chinese patients with lung cancer: Feasibility study. Journal of medical Internet research, 20(9), e11087.
  10. Ross, C., & Swetlitz, I. (2017). IBM pitched its Watson supercomputer as a revolution in cancer care. It’s nowhere close. STAT News.
  11. Zauderer, M. G., Gucalp, A., Epstein, A. S., Seidman, A. D., Caroline, A., Granovsky, S., … & Petri, J. (2014). Piloting IBM Watson Oncology within Memorial Sloan Kettering’s regional network.
  12. Herath, D. H., Wilson-Ing, D., Ramos, E., & Morstyn, G. (2016). Assessing the natural language processing capabilities of IBM Watson for oncology using real Australian lung cancer cases.
  13. Bach, P., Zauderer, M. G., Gucalp, A., Epstein, A. S., Norton, L., Seidman, A. D., … & Keesing, J. (2013). Beyond Jeopardy!: Harnessing IBM’s Watson to improve oncology decision making.
  14. Kris, M. G., Gucalp, A., Epstein, A. S., Seidman, A. D., Fu, J., Keesing, J., … & Setnes, M. (2015). Assessing the performance of Watson for oncology, a decision support system, using actual contemporary clinical cases.

AI in medicine – not ready for prime time?

Am exploring what really can be said for AI in medicine.  There are lots of good things going on … but some reality seems to have set in.

I ran into this conclusion in the paper  Deep Learning for Genomics: A Concise Overview by Yue and Wang at Carnegie Mellon. [Yue, Tianwei and Haohan Wang. “Deep Learning for Genomics: A Concise Overview.” CoRR abs/1802.00810 (2018):]

Current applications, however, have not brought about a watershed revolution in genomic research. The predictive performances in most problems have not reach the expec- tation for real-world applications, neither have the interpretations of these abstruse models elucidate insightful knowledge. A plethora of new deep learning methods is constantly being proposed but awaits artful applications in genomics.

I was really hoping we were farther along. Maybe there’s hope … there’s always hope        [Elvis: Farther along we’ll know more about it. Farther along we’ll understand why. Cheer up my brother live in the sunshine].  Right now, what I am seeing with Watson for Genomics, and other ‘production systems ‘ suggest lots of work ahead.

Experiment 2 -The Search for Deep Learning Impact

Now added a recent search that looked for recent USPTO grants that specified Deep Learning and Medicine …

filed under

PATEX 2: Patent Exploration for Artificial Intelligence in Medicine (AIM)

Experiment 2 -The Search for Deep Learning Impact

As an amusing element, it picked up this:

US-10040551-B2. – Drone delivery of coffee based on a cognitive state of an individual.

enjoy!

 

What connects all these clues?

Really, if you had to link all these, what would YOU come up with …   it turns our that all these are linked via George Gilder’s brain and imagination of   in his “Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy “  (more details here)

(rank / xx / subject)

1          60        The System of The World

83        36        Artificial Intelligence

84        36        Machine Learning

88        35        Data Centers

92        34        Information Theory

117      28        Virtual Reality

118      28        Von Neumann

130      26        Computer Science

171      23        Human Beings

193      22        Smart Contracts

230      19        Larry Page

315      16        Open Source

316      16        Peter Thiel

320      16        The Dalles

407      14        Vitalik Buterin

421      13        Billion Dollars

422      13        Deep Learning

437      13        Markov Models

479      12        Brendan Eich

483      12        Central Banks

485      12        Data Centers

486      12        Elon Musk

497      12        Marc Andreessen

508      12        Private Keys

510      12        Public Keys

512      12        Search Engines

517      12        Speed Of Light

526      12        The Machine

553      11        Bell’s Law

558      11        Craig Wright

567      11        Human Intelligence

577      11        Muneeb Ali

578      11        New York Times

592      11        The Real World

614      11        Time and Space

643      10        Cloud Computing

651      10        Economic Growth

670      10        Jaron Lanier

673      10        Market Cap

677      10        Neal Stephenson

678      10        Nick Stab

691      10        Property Rights

834      9          Satoshi Nakamoto

869      9          Venture Capitalists

906      8          Bitcoin Blockchain

918      8          Eric Schmidt

919      8          Face Recognition

932      8          Google Brain

933      8          The Great Unbundling

934      8          The Ground State

945      8          Internet Architecture

960      8          Low Entropy

982      8          Princeton University

94        8          Scarcity Of Time

1024    8          Thiel Fellowship

1162    7          Hidden Markov Models

1163    7          High Entropy

1166    7          Human Brains

1167    7          Human History

1168    7          Human Minds

1184    7          Information Economy

1185    7          Information Technology

1242    7          Private Keys

1246    7          Ray Kurzweil

1253    7          Self Driving Cars

1254    7          Sergey Brin

1286    7          The Great Unbundling

1324    7          Turing Machine

1412    6          Bill Dally

1424    6          Charles Sanders Peirce

1445    6          Economic Activity

1544    6          Lambda Labs

1547    6          Leemon Baird

1639    6          Stephen Balaban

1739    6          Walled Gardens

1887    5          Being Human

1894    5          Bitcoin Maximalists

1898    5          Blockchain Technology

1977    5          Free Will

2001    5          Hal Finney

2019    5          Human Consciousness

2078    5          Kurt Gödel

2099    5          Mathematical Logic

2100    5          Mathematics of Creativity

Beyond the Usual AI and Machine Intelligence

the Beyond topics
  1. George Gilder –Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy worth reading to obtain additional perspectives. Some may be right, some may be wrong. Definitely technologically provocative. Will Google/Alphabet last?Do you know about the Dalles? You should. My first clue was through the book …OK … find out more about Google’s Data Centers. Find out more about other pieces worth knowing.

the Artificial and Machine Intelligence related topics

  1. Gelernter, D. (2016). The tides of mind: Uncovering the spectrum of consciousness. WW Norton & Company.
  2. Marquis, P., Papini, O., & Prade, H. (2014). Some Elements for a Prehistory of Artificial Intelligence in the Last Four Centuries. ECAI.
  3. Scheutz, M. (Ed.). (2002). Computationalism: new directions. MIT Press.
  4. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach.
    This is an updated edition of the 2010 version containing extensive current references. [note the book is getting hard to find sometimes due to demand, and its being the definitive AI textbook. Check the edition you are using/getting]
  5. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press. This is an updated (2nd) edition of the 1998 version
  6. Nilsson, N. J., & Nilsson, N. J. (1998). Artificial intelligence: a new synthesis. Morgan Kaufmann.
  7. Poole, D. L., Mackworth, A. K., & Goebel, R. (1998). Computational intelligence: a logical approach (Vol. 1). New York: Oxford University Press.
    see also Artificial Intelligence: Foundations of Computational Agents 2nd Edition by the same authors.
  8. Pratt, V. (1987). Thinking Machines—The Evolution of Artificial Intelligence. Oxford: Basil Blackwell. – this is a general history of earlier machines … great reference to get historical insights not easily obtained elsewhere.
  9. Turing, A. M. (1948). Intelligent machinery. NPL. Mathematics Division. See also, Turing, A. (2004). Intelligent machinery (1948). The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma B. Jack Copeland, 395 which provides context and pointers to additional Turing resources.
  10. B. Jack Copeland (2004), Computability: Turing, Gödel, Church, and Beyond, The MIT Press.

Hard(er) Core Science Fiction and Speculative Fiction works

    1. John C. Wright’s Count to the Eschaton series is worth reading … provides interesting glimpse into a possible (far) future. It’s also fun to read … so good ideas and an interesting, universe spanning plot.

Concerning Superintelligence

These are my recommendations of key texts to read  if you really want to get familiar with   Superintelligence. 

SI-1. Good, I. J. (1966). Speculations concerning the first ultraintelligent machine. In Advances in computers (Vol. 6, pp. 31-88). Elsevier.

Irving John (Jack) Good was mathematician who worked with Alan Turing and made significant contribution to braking the Enigma codes. One could regard him as Turing’s statistician. Good later worked with British AI pioneer and computer designer Donald Michie. Good devoted much of his later life to research in Bayesian statistics. Goods paper cited above was the first to clearly spell out ultraintelligent machines and can be rightly viewed as the basis of the superintelligence discipline today. This paper stated:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control

This short paragraph not only presages the idea of superintelligent AI, it also laid the groundwork for subsequent Paperclip Apocalypse scenarios and the drive for AI safety considerations. Good was particularly a credible messenger due to his early intimate and highly knowledgeable technical familiarity and experience with highly complex and capable computers.

SI-2. Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. New York: Oxford University Press.

Bostrom’s book was much waited by the superintelligence (SI) community, and in some respects provided the academic sanctioning of runaway-AI potential for harm, and AI-safety, as legitimate scholarly topics for discussion. In some ways the runaway SI apocalypse scenarios act to counterbalance Ray Kurzweil’s Exponentiality of all things technological and Singularity visions.

SI-3. Drexler, K.E. (2019): Reframing Superintelligence: Comprehensive AI Services as General Intelligence, Technical Report #2019-1, Future of Humanity Institute, University of Oxford

This is a must read by Eric Drexler, pioneer of nanotechnology . This report projects a possible, if not likely, trajectory of AI development that envisions emergence of asymptotically comprehensive, superintelligent-level AI services. Drexler has been prescient regarding the importance of and trajectory of nanotechnology.

SI-4.Yampolskiy, R. V. (2015). Artificial Superintelligence: a futuristic approach. CRC Press.

While maintaining a focus on AI and superintelligence safety, Roman Yampolskiy brings additional dimensions to discussions of superintelligence. I am not quite sure why the need to use the term Artificial in the title and the discussion. Superintelligence is not now and will never be a normal or natural attribute; I view adding artificial to superintelligence as redundant.

The book includes interesting and useful discussions on topics such as AI-Completeness and AI-Hardness, Mind Design and associated taxonomies of real and speculative mind design space. Most of the intensity and depth of discussion though is focused on the harm that SI can bring (and according to the author and many of the references cited, viewed as very likely to occur.) The detailed references provided are exceptional. Personally, I would prefer to see more discussion of the positive aspects of SI and the hard problems it can and should solve first.

SI-5. Philip Larrey (2017), Would Super-Human Machine Intelligence Really Be Super-Human? in G. Dodig-Crnkovic and R. Giovagnoli (eds.), Representation and Reality in Humans, Other Living Organisms and Intelligent Machines , (Studies in Applied Philosophy, Epistemology and Rational Ethics 28, DOI 10.1007/978-3-319-43784-2_19)